Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Protein S-glutathionylation stimulate adipogenesis by stabilizing C/EBPβ in 3T3L1 cells.

Identifieur interne : 000032 ( Main/Exploration ); précédent : 000031; suivant : 000033

Protein S-glutathionylation stimulate adipogenesis by stabilizing C/EBPβ in 3T3L1 cells.

Auteurs : Yosuke Watanabe [Japon] ; Kazuhiro Watanabe [Japon] ; Daisuke Fujioka [Japon] ; Kazuto Nakamura [Japon] ; Takamitsu Nakamura [Japon] ; Manabu Uematsu [Japon] ; Markus M. Bachschmid [États-Unis] ; Reiko Matsui [États-Unis] ; Kiyotaka Kugiyama [Japon]

Source :

RBID : pubmed:32141127

Abstract

Reactive oxygen species (ROS) increase during adipogenesis and in obesity. Oxidants react with cysteine residues of proteins to form glutathione (GSH) adducts, S-glutathionylation, that are selectively removed by glutaredoxin-1 (Glrx). We have previously reported that Glrx knockout mice had increased protein S-glutathionylation and developed obesity by an unknown mechanism. In this study, we demonstrated that 3T3L1 adipocytes differentiation increased ROS and protein S-glutathionylation. Glrx ablation elevated protein S-glutathionylation and lipid content in 3T3L1 cells. Glrx replenishment decreased the lipid content of Glrx KO 3T3L1 cells. Glrx KO also increased protein expression and protein S-glutathionylation of the adipogenic transcription factor CCAAT enhancer-binding protein (C/EBP) β. Protein S-glutathionylation decreased the interaction of C/EBPβ and protein inhibitor of activated STAT (PIAS) 1, a small ubiquitin-related modifier E3 ligase that facilitates C/EBPβ degradation. Experiments with truncated mutant C/EBPβ demonstrated that PIAS1 interacted with the liver-enriched inhibitory protein (LIP) region of C/EBPβ. Furthermore, mass spectrometry analysis identified protein S-glutathionylation of Cys201 and Cys296 in the LIP region of C/EBPβ. The C201S, C296S double-mutant C/EBPβ prevented protein S-glutathionylation and preserved the interaction with PIAS1. In summary, Glrx ablation stimulated 3T3L1 cell differentiation and adipogenesis via increased protein S-glutathionylation of C/EBPβ, stabilizing and increasing C/EBPβ protein levels.

DOI: 10.1096/fj.201902575R
PubMed: 32141127


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Protein S-glutathionylation stimulate adipogenesis by stabilizing C/EBPβ in 3T3L1 cells.</title>
<author>
<name sortKey="Watanabe, Yosuke" sort="Watanabe, Yosuke" uniqKey="Watanabe Y" first="Yosuke" last="Watanabe">Yosuke Watanabe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Internal Medicine II, University of Yamanashi, Chuo</wicri:regionArea>
<wicri:noRegion>Chuo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Watanabe, Kazuhiro" sort="Watanabe, Kazuhiro" uniqKey="Watanabe K" first="Kazuhiro" last="Watanabe">Kazuhiro Watanabe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Internal Medicine II, University of Yamanashi, Chuo</wicri:regionArea>
<wicri:noRegion>Chuo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fujioka, Daisuke" sort="Fujioka, Daisuke" uniqKey="Fujioka D" first="Daisuke" last="Fujioka">Daisuke Fujioka</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Internal Medicine II, University of Yamanashi, Chuo</wicri:regionArea>
<wicri:noRegion>Chuo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nakamura, Kazuto" sort="Nakamura, Kazuto" uniqKey="Nakamura K" first="Kazuto" last="Nakamura">Kazuto Nakamura</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Internal Medicine II, University of Yamanashi, Chuo</wicri:regionArea>
<wicri:noRegion>Chuo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nakamura, Takamitsu" sort="Nakamura, Takamitsu" uniqKey="Nakamura T" first="Takamitsu" last="Nakamura">Takamitsu Nakamura</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Internal Medicine II, University of Yamanashi, Chuo</wicri:regionArea>
<wicri:noRegion>Chuo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Uematsu, Manabu" sort="Uematsu, Manabu" uniqKey="Uematsu M" first="Manabu" last="Uematsu">Manabu Uematsu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Internal Medicine II, University of Yamanashi, Chuo</wicri:regionArea>
<wicri:noRegion>Chuo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bachschmid, Markus M" sort="Bachschmid, Markus M" uniqKey="Bachschmid M" first="Markus M" last="Bachschmid">Markus M. Bachschmid</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kugiyama, Kiyotaka" sort="Kugiyama, Kiyotaka" uniqKey="Kugiyama K" first="Kiyotaka" last="Kugiyama">Kiyotaka Kugiyama</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Internal Medicine II, University of Yamanashi, Chuo</wicri:regionArea>
<wicri:noRegion>Chuo</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32141127</idno>
<idno type="pmid">32141127</idno>
<idno type="doi">10.1096/fj.201902575R</idno>
<idno type="wicri:Area/Main/Corpus">000074</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000074</idno>
<idno type="wicri:Area/Main/Curation">000074</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000074</idno>
<idno type="wicri:Area/Main/Exploration">000074</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Protein S-glutathionylation stimulate adipogenesis by stabilizing C/EBPβ in 3T3L1 cells.</title>
<author>
<name sortKey="Watanabe, Yosuke" sort="Watanabe, Yosuke" uniqKey="Watanabe Y" first="Yosuke" last="Watanabe">Yosuke Watanabe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Internal Medicine II, University of Yamanashi, Chuo</wicri:regionArea>
<wicri:noRegion>Chuo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Watanabe, Kazuhiro" sort="Watanabe, Kazuhiro" uniqKey="Watanabe K" first="Kazuhiro" last="Watanabe">Kazuhiro Watanabe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Internal Medicine II, University of Yamanashi, Chuo</wicri:regionArea>
<wicri:noRegion>Chuo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fujioka, Daisuke" sort="Fujioka, Daisuke" uniqKey="Fujioka D" first="Daisuke" last="Fujioka">Daisuke Fujioka</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Internal Medicine II, University of Yamanashi, Chuo</wicri:regionArea>
<wicri:noRegion>Chuo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nakamura, Kazuto" sort="Nakamura, Kazuto" uniqKey="Nakamura K" first="Kazuto" last="Nakamura">Kazuto Nakamura</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Internal Medicine II, University of Yamanashi, Chuo</wicri:regionArea>
<wicri:noRegion>Chuo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nakamura, Takamitsu" sort="Nakamura, Takamitsu" uniqKey="Nakamura T" first="Takamitsu" last="Nakamura">Takamitsu Nakamura</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Internal Medicine II, University of Yamanashi, Chuo</wicri:regionArea>
<wicri:noRegion>Chuo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Uematsu, Manabu" sort="Uematsu, Manabu" uniqKey="Uematsu M" first="Manabu" last="Uematsu">Manabu Uematsu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Internal Medicine II, University of Yamanashi, Chuo</wicri:regionArea>
<wicri:noRegion>Chuo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bachschmid, Markus M" sort="Bachschmid, Markus M" uniqKey="Bachschmid M" first="Markus M" last="Bachschmid">Markus M. Bachschmid</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kugiyama, Kiyotaka" sort="Kugiyama, Kiyotaka" uniqKey="Kugiyama K" first="Kiyotaka" last="Kugiyama">Kiyotaka Kugiyama</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Internal Medicine II, University of Yamanashi, Chuo</wicri:regionArea>
<wicri:noRegion>Chuo</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">FASEB journal : official publication of the Federation of American Societies for Experimental Biology</title>
<idno type="eISSN">1530-6860</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Reactive oxygen species (ROS) increase during adipogenesis and in obesity. Oxidants react with cysteine residues of proteins to form glutathione (GSH) adducts, S-glutathionylation, that are selectively removed by glutaredoxin-1 (Glrx). We have previously reported that Glrx knockout mice had increased protein S-glutathionylation and developed obesity by an unknown mechanism. In this study, we demonstrated that 3T3L1 adipocytes differentiation increased ROS and protein S-glutathionylation. Glrx ablation elevated protein S-glutathionylation and lipid content in 3T3L1 cells. Glrx replenishment decreased the lipid content of Glrx KO 3T3L1 cells. Glrx KO also increased protein expression and protein S-glutathionylation of the adipogenic transcription factor CCAAT enhancer-binding protein (C/EBP) β. Protein S-glutathionylation decreased the interaction of C/EBPβ and protein inhibitor of activated STAT (PIAS) 1, a small ubiquitin-related modifier E3 ligase that facilitates C/EBPβ degradation. Experiments with truncated mutant C/EBPβ demonstrated that PIAS1 interacted with the liver-enriched inhibitory protein (LIP) region of C/EBPβ. Furthermore, mass spectrometry analysis identified protein S-glutathionylation of Cys201 and Cys296 in the LIP region of C/EBPβ. The C201S, C296S double-mutant C/EBPβ prevented protein S-glutathionylation and preserved the interaction with PIAS1. In summary, Glrx ablation stimulated 3T3L1 cell differentiation and adipogenesis via increased protein S-glutathionylation of C/EBPβ, stabilizing and increasing C/EBPβ protein levels.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">32141127</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1530-6860</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>34</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>FASEB journal : official publication of the Federation of American Societies for Experimental Biology</Title>
<ISOAbbreviation>FASEB J</ISOAbbreviation>
</Journal>
<ArticleTitle>Protein S-glutathionylation stimulate adipogenesis by stabilizing C/EBPβ in 3T3L1 cells.</ArticleTitle>
<Pagination>
<MedlinePgn>5827-5837</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1096/fj.201902575R</ELocationID>
<Abstract>
<AbstractText>Reactive oxygen species (ROS) increase during adipogenesis and in obesity. Oxidants react with cysteine residues of proteins to form glutathione (GSH) adducts, S-glutathionylation, that are selectively removed by glutaredoxin-1 (Glrx). We have previously reported that Glrx knockout mice had increased protein S-glutathionylation and developed obesity by an unknown mechanism. In this study, we demonstrated that 3T3L1 adipocytes differentiation increased ROS and protein S-glutathionylation. Glrx ablation elevated protein S-glutathionylation and lipid content in 3T3L1 cells. Glrx replenishment decreased the lipid content of Glrx KO 3T3L1 cells. Glrx KO also increased protein expression and protein S-glutathionylation of the adipogenic transcription factor CCAAT enhancer-binding protein (C/EBP) β. Protein S-glutathionylation decreased the interaction of C/EBPβ and protein inhibitor of activated STAT (PIAS) 1, a small ubiquitin-related modifier E3 ligase that facilitates C/EBPβ degradation. Experiments with truncated mutant C/EBPβ demonstrated that PIAS1 interacted with the liver-enriched inhibitory protein (LIP) region of C/EBPβ. Furthermore, mass spectrometry analysis identified protein S-glutathionylation of Cys201 and Cys296 in the LIP region of C/EBPβ. The C201S, C296S double-mutant C/EBPβ prevented protein S-glutathionylation and preserved the interaction with PIAS1. In summary, Glrx ablation stimulated 3T3L1 cell differentiation and adipogenesis via increased protein S-glutathionylation of C/EBPβ, stabilizing and increasing C/EBPβ protein levels.</AbstractText>
<CopyrightInformation>© 2020 Federation of American Societies for Experimental Biology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Watanabe</LastName>
<ForeName>Yosuke</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Watanabe</LastName>
<ForeName>Kazuhiro</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fujioka</LastName>
<ForeName>Daisuke</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nakamura</LastName>
<ForeName>Kazuto</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nakamura</LastName>
<ForeName>Takamitsu</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Uematsu</LastName>
<ForeName>Manabu</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bachschmid</LastName>
<ForeName>Markus M</ForeName>
<Initials>MM</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matsui</LastName>
<ForeName>Reiko</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kugiyama</LastName>
<ForeName>Kiyotaka</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Internal Medicine II, University of Yamanashi, Chuo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 DK103750</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>16GRNT27660006</GrantID>
<Agency>American Heart Association</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>R01 HL133013</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DK103750</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL133013</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>FASEB J</MedlineTA>
<NlmUniqueID>8804484</NlmUniqueID>
<ISSNLinking>0892-6638</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">CCAAT enhancer-binding protein</Keyword>
<Keyword MajorTopicYN="N">S-glutathionylation</Keyword>
<Keyword MajorTopicYN="N">glutaredoxin-1</Keyword>
<Keyword MajorTopicYN="N">reactive oxygen species</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>02</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32141127</ArticleId>
<ArticleId IdType="doi">10.1096/fj.201902575R</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Fruh SM. Obesity: risk factors, complications, and strategies for sustainable long-term weight management. J Am Assoc Nurse Pract. 2017;29:S3-S14.</Citation>
</Reference>
<Reference>
<Citation>Unamuno X, Gómez-Ambrosi J, Rodríguez A, Becerril S, Frühbeck G, Catalán V. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur J Clin Invest. 2018;48:e12997.</Citation>
</Reference>
<Reference>
<Citation>Hausman DB, DiGirolamo M, Bartness TJ, Hausman GJ, Martin RJ. The biology of white adipocyte proliferation. Obes Rev. 2001;2:239-254.</Citation>
</Reference>
<Reference>
<Citation>Lee H, Lee YJ, Choi H, Ko EH, Kim J-W. Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. J Biol Chem. 2009;284:10601-10609.</Citation>
</Reference>
<Reference>
<Citation>Tormos KV, Anso E, Hamanaka RB, et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 2011;14:537-544.</Citation>
</Reference>
<Reference>
<Citation>Chang YC, Yu YH, Shew JY, et al. Deficiency of NPGPx, an oxidative stress sensor, leads to obesity in mice and human. EMBO Mol Med. 2013;5:1165-1179.</Citation>
</Reference>
<Reference>
<Citation>Youn J, Siu KL, Lob HE, Itani H, Harrison DG, Cai H. Role of vascular oxidative stress in obesity and metabolic syndrome. Diabetes. 2014;63:2344-2355.</Citation>
</Reference>
<Reference>
<Citation>Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114:1752-1761.</Citation>
</Reference>
<Reference>
<Citation>Kobayashi T, Watanabe Y, Saito Y, et al. Mice lacking the glutamate-cysteine ligase modifier subunit are susceptible to myocardial ischaemia-reperfusion injury. Cardiovasc Res. 2010;85:785-795.</Citation>
</Reference>
<Reference>
<Citation>Kendig EL, Chen Y, Krishan M, et al. Lipid metabolism and body composition in Gclm(-/-) mice. Toxicol Appl Pharmacol. 2011;257:338-348.</Citation>
</Reference>
<Reference>
<Citation>Watanabe Y, Cohen RA, Matsui R. Redox regulation of ischemic angiogenesis-another aspect of reactive oxygen species-. Circ J. 2016;80:1278-1284.</Citation>
</Reference>
<Reference>
<Citation>Watanabe Y, Watanabe K, Kobayashi T, et al. Chronic depletion of glutathione exacerbates ventricular remodelling and dysfunction in the pressure-overloaded heart. Cardiovasc Res. 2013;97:282-292.</Citation>
</Reference>
<Reference>
<Citation>Chrestensen CA, Starke DW, Mieyal JJ. Acute cadmium exposure inactivates thioltransferase (Glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. J Biol Chem. 2000;275:26556-26565.</Citation>
</Reference>
<Reference>
<Citation>Shao D, Han J, Hou X, et al. Glutaredoxin-1 deficiency causes fatty liver and dyslipidemia by inhibiting Sirtuin-1. Antioxid Redox Signal. 2017;27:313-327.</Citation>
</Reference>
<Reference>
<Citation>Cho H, Kim KM, Han S, et al. Staufen1-mediated mRNA decay functions in adipogenesis. Mol Cell. 2012;46:495-506.</Citation>
</Reference>
<Reference>
<Citation>Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281-2308.</Citation>
</Reference>
<Reference>
<Citation>Han YH, Moon HJ, You BR, Kim SZ, Kim SH, Park WH. The effects of N-acetyl cysteine on the MG132 proteasome inhibitor-treated lung cancer cells in relation to cell growth, reactive oxygen species and glutathione. Int J Mol Med. 2010;25:657-662.</Citation>
</Reference>
<Reference>
<Citation>Liu Y, Zhang Y-D, Guo L, et al. Protein inhibitor of activated STAT 1 (PIAS1) is identified as the SUMO E3 ligase of CCAAT/enhancer-binding protein β (C/EBPβ) during adipogenesis. Mol Cell Biol. 2013;33:4606-4617.</Citation>
</Reference>
<Reference>
<Citation>Luedde T, Duderstadt M, Streetz KL, et al. C/EBP β isoforms LIP and LAP modulate progression of the cell cycle in the regenerating mouse liver. Hepatology. 2004;40:356-365.</Citation>
</Reference>
<Reference>
<Citation>Klein EA, Thompson IM, Tangen CM, et al. Vitamin E and the risk of prostate cancer. JAMA. 2011;306:1549.</Citation>
</Reference>
<Reference>
<Citation>Han CY, Umemoto T, Omer M, et al. NADPH oxidase-derived reactive oxygen species increases expression of monocyte chemotactic factor genes in cultured adipocytes. J Biol Chem. 2012;287:10379-10393.</Citation>
</Reference>
<Reference>
<Citation>Vigilanza P, Aquilano K, Baldelli S, Rotilio G, Ciriolo MR. Modulation of intracellular glutathione affects adipogenesis in 3T3-L1 cells. J Cell Physiol. 2011;226:2016-2024.</Citation>
</Reference>
<Reference>
<Citation>Anathy V, Lahue KG, Chapman DG, et al. Reducing protein oxidation reverses lung fibrosis. Nat Med. 2018;24:1128-1135.</Citation>
</Reference>
<Reference>
<Citation>Zhang Y-Y, Li X, Qian S-W, et al. Transcriptional activation of histone H4 by C/EBPβ during the mitotic clonal expansion of 3T3-L1 adipocyte differentiation. Mol Biol Cell. 2011;22:2165-2174.</Citation>
</Reference>
<Reference>
<Citation>Guo L, Li X, Tang Q-Q. Transcriptional regulation of adipocyte differentiation: a central role for CCAAT/enhancer-binding protein (C/EBP) β. J Biol Chem. 2015;290:755-761.</Citation>
</Reference>
<Reference>
<Citation>Tanaka T, Yoshida N, Kishimoto T, Akira S. Defective adipocyte differentiation in mice lacking the C/EBPβ and/or C/EBPδ gene. EMBO J. 1997;16:7432-7443.</Citation>
</Reference>
<Reference>
<Citation>Millward CA, Heaney JD, Sinasac DS, et al. Mice with a deletion in the gene for CCAAT/enhancer-binding protein β are protected against diet-induced obesity. Diabetes. 2007;56:161-167.</Citation>
</Reference>
<Reference>
<Citation>Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425-479.</Citation>
</Reference>
<Reference>
<Citation>Herrmann J, Lerman LO, Lerman A. Ubiquitin and ubiquitin-like proteins in protein regulation. Circ Res. 2007;100:1276-1291.</Citation>
</Reference>
<Reference>
<Citation>Berndsen CE, Wolberger C. New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol. 2014;21:301-307.</Citation>
</Reference>
<Reference>
<Citation>Watanabe Y, Murdoch CE, Sano S, et al. Glutathione adducts induced by ischemia and deletion of glutaredoxin-1 stabilize HIF-1α and improve limb revascularization. Proc Natl Acad Sci USA. 2016;113:6011-6016.</Citation>
</Reference>
<Reference>
<Citation>Carvalho AN, Marques C, Guedes RC, et al. S -Glutathionylation of Keap1: a new role for glutathione S -transferase pi in neuronal protection. FEBS Lett. 2016;590:1455-1466.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<country name="Japon">
<noRegion>
<name sortKey="Watanabe, Yosuke" sort="Watanabe, Yosuke" uniqKey="Watanabe Y" first="Yosuke" last="Watanabe">Yosuke Watanabe</name>
</noRegion>
<name sortKey="Fujioka, Daisuke" sort="Fujioka, Daisuke" uniqKey="Fujioka D" first="Daisuke" last="Fujioka">Daisuke Fujioka</name>
<name sortKey="Kugiyama, Kiyotaka" sort="Kugiyama, Kiyotaka" uniqKey="Kugiyama K" first="Kiyotaka" last="Kugiyama">Kiyotaka Kugiyama</name>
<name sortKey="Nakamura, Kazuto" sort="Nakamura, Kazuto" uniqKey="Nakamura K" first="Kazuto" last="Nakamura">Kazuto Nakamura</name>
<name sortKey="Nakamura, Takamitsu" sort="Nakamura, Takamitsu" uniqKey="Nakamura T" first="Takamitsu" last="Nakamura">Takamitsu Nakamura</name>
<name sortKey="Uematsu, Manabu" sort="Uematsu, Manabu" uniqKey="Uematsu M" first="Manabu" last="Uematsu">Manabu Uematsu</name>
<name sortKey="Watanabe, Kazuhiro" sort="Watanabe, Kazuhiro" uniqKey="Watanabe K" first="Kazuhiro" last="Watanabe">Kazuhiro Watanabe</name>
</country>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Bachschmid, Markus M" sort="Bachschmid, Markus M" uniqKey="Bachschmid M" first="Markus M" last="Bachschmid">Markus M. Bachschmid</name>
</region>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000032 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000032 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32141127
   |texte=   Protein S-glutathionylation stimulate adipogenesis by stabilizing C/EBPβ in 3T3L1 cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32141127" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020